

Industrial Grade Inertial Measurement Unit

ASC IMU 7

6 DOF System

Modular Concept – Measurement Range Selection MEMS Capacitive and Vibrating Ring Technology Measurement Range Accelerometers: ±2 to ±50 g Measurement Range Gyroscopes: ±75 to ±900 °/s

Aluminum Housing Made in Germany

Analog Inertial Measurement Units

ASC's analog inertial measurement units are based on three accelerometers and three gyroscopes that are integrated in a single housing. The modular concept allows to adapt all IMUs to the exact requirements of the application. Two different types of accelerometer series (Low Noise and Medium Frequency) are available and ideal measurement ranges for the accelerometers and gyroscopes are selectable and combinable.

The ASC IMU 7 features high bias stability and low angular random walk leading to industrial grade performance. The design of the micro-mechanical silicon structures makes the IMU extremely insensitive to external impacts and vibrations. They are therefore ideal suited for use in harsh environmental conditions.

Description

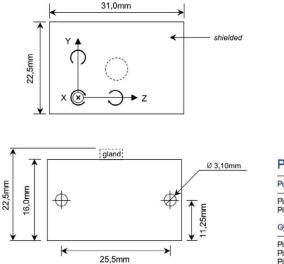
The inertial measurement unit (IMU) is based on proven MEMS accelerometers and gyroscopes for detecting the smallest linear accelerations and angular rates. The LN (Low Noise) accelerometers provide an outstanding noise performance from 7 to 50 μ g/ $^{\prime}$ Hz while the MF (Medium Frequency) accelerometers provide a wide frequency response range from 0 Hz to 4.5 kHz (\pm 3 dB). The integrated electronic circuitry enables separate analog voltage outputs for all 6 degrees of freedom and flexible power supply voltage from 5 (LN) or 6 (MF) to 40 VDC. In addition, the gyroscopes providing a bias stability of 12 $^{\circ}$ / $^{\prime}$ hr and an angular random walk of 0.2 $^{\circ}$ / $^{\prime}$ hr

The IMU feature a lightweight, reliable aluminum housing with protection class IP65 and a detachable connector cable with configurable length and connectors.

The compact design of the ASC IMU 7 allows its use in applications for evaluating the driving dynamics of ships, trains or motor vehicles. IMUs are also used in automated guided vehicles (AGV), where they help to optimize curve speed and to control driving performance.

Features

- Industrial Grade IMU
- Low Noise Analog Voltage Output Signal
- High Bias Stability
- Low Angular Random Walk
- Excellent Shock and Vibration Resistance


Options

- Customized Cable Length
- Customized Connector
- Integrated Cable

Applications

- Vehicle and Running Dynamics
- Driving and Ride Comfort Tests
- Short-term Bridging Navigation

More applications in several markets are figured out on our web page www.asc-sensors.de

Pin assignment:

Power Supply:

Pin 1: Power Supply - (black)
Pin 2: Power Supply + (red)
Gyroscope:

Gyroscope: Pin 9: no
Pin 3: Signal X (red / violet)
Pin 4: Signal Y (red / grey)
Pin 5: Signal Z (black / violet)

Typical Specification of the IMU

An inertial measurement unit (IMU) is a 6-DOF system that measures linear and angular motion using a combination of accelerometers and gyroscopes. The MEMS based IMUs feature a range of precision inertial sensors, including:

- 3 LN (Low Noise) accelerometers (see detailed specification on page 3)
- or 3 MF (Medium Frequency) accelerometers (see detailed specifications on page 4)
- and 3 industrial grade gyroscopes (see detailed specifications on page 5)

The IMU thus outputs acceleration and angular rate signals in the form of an analog voltage signal. Due to the very good long-term stability and the low noise of the sensors used, it is possible to reliably obtain position changes in all 6 DOFs with high accuracy and repeatability.

Dynamic

Measurement Range (accelerometers)	g	±2 to ±50
Measurement Range (gyroscopes)	°/s	±75 to ±900

Electrical

Power Supply Voltage	V	LN: 6 to 40	MF: 5 to 40
Operating Current Consumption	mA	LN: < 40	MF: <35
Isolation			ated from the sensor housing Sensor connected to apply the cable shielding

Environmental

Operating Temperature Range	°C	-40 to +85
Storage Temperature Range	°C	-40 to +100
Shock Limit (operating)	g	500
Shock Limit (unpowered)	g	2000
Protection Class		IP65

Case Material		Anodized Aluminum
Connector Sensor Housing		12-pin Comtronic (male)
Connector at Cable End		Optional
Mounting		M3 Screws
Weight (without cable)	gram	26
Cable		30 gram per meter AWG 30 Polyurethane (PUR) Diameter 4.5 mm

Detailed Typical Specification of the LN Accelerometers

The key components of the capacitive accelerometers are high-quality micro-electro-mechanical systems (MEMS) that feature excellent long-term stability and reliability. This technology enables the measurement of static (DC) and constant accelerations, which can be used to calculate the velocity and displacement of moving objects. Depending on the design of the spring-mass-damping system, however, it is also possible to detect dynamic (AC) accelerations with amplitudes up to ± 50 g within a frequency response range up to 2.1 kHz (± 3 dB) and a noise performance < $50 \,\mu g/VHz$. Other advantages of capacitive accelerometers are their outstanding temperature stability, excellent response behavior and achievable resolution.

-				•
1 1/1	/n	2	m	10
יש	,,,	а		ı

Measurement Range	g	±2	±5	±10	±25	±50
Scale Factor (sensitivity)	mV/g	2000	800	400	160	80
Noise Density	μg/√Hz	7	12	18	25	50
Min. Frequency Response Range (±5 %)	Hz	0 to >100	0 to >100	0 to >300	0 to >500	0 to >650
Max. Frequency Response Range (±3 dB)	Hz	0 to <525	0 to <800	0 to <1100	0 to <1750	0 to <2100
Amplitude Non-Linearity	% FS0		<0	.15 (typ) <0.5 (m	ax)	
Transverse Sensitivity	%			<2 (typ) <3 (max))	

Electrical

Full Scale Output (differential mode)	V			±4.0		
Positive (signal +), Analog Output Voltage Signal Range	V			0.5 to 4.5		
Negative (signal -), Analog Output Voltage Signal Range	V			0.5 to 4.5		
Offset (bias)	mV	±80	±80	±40	±40	±40
Broadband Noise (over min frequency range ±5 %)	μV	140	95	125	90	100
Output Impedance	Ω			90		

Environmental

Temperature Coefficient of the Scale Factor (max)	ppm/K			±200		
Temperature Coefficient of the Offset (max)	mg/K	±0.8	±2	±4	±10	±20

Sensing Element	MEMS Capacitive

Detailed Typical Specification of the MF Accelerometers

The key components of the capacitive accelerometers are high-quality micro-electro-mechanical systems (MEMS) that feature excellent long-term stability and reliability. This technology enables the measurement of static (DC) and constant accelerations, which can be used to calculate the velocity and displacement of moving objects. Depending on the design of the spring-mass-damping system, however, it is also possible to detect dynamic (AC) accelerations with amplitudes up to ± 50 g within a frequency response range up to ± 4.5 kHz (± 3 dB) and a noise performance <170 μ g/ \pm Hz. Other advantages of capacitive accelerometers are their outstanding temperature stability, excellent response behavior and achievable resolution.

_				•
1 17	/n	2	m	10
יש	V I I	а		ı

Measurement Range	g	±2	±5	±10	±30	±50
Scale Factor (sensitivity)	mV/g	1350	540	270	90	54
Noise Density	μg/√Hz	10	20	35	100	170
Min. Frequency Response Range (±5 %)	Hz	0 to >100	0 to >700	0 to >1000	0 to >1500	0 to >1500
Max. Frequency Response Range (±3 dB)	Hz	0 to <1150	0 to <1900	0 to <3200	0 to <4000	0 to <4500
Amplitude Non-Linearity	% FSO		<(0.1 (typ) <0.3 (ma	ax)	
Transverse Sensitivity	%			<1		

Electrical

Full Scale Output (differential mode)	V			±2.7		
Positive (signal +), Analog Output Voltage Signal Range	V			0.3 to 3.0		
Negative (signal -), Analog Output Voltage Signal Range	V			0.3 to 3.0		
Offset (bias)	mV			±10		
Broadband Noise (over frequency range ±5 %)	μV	250	310	410	440	475
Resistive Load	kΩ			1000		

Environmental

Temperature Coefficient of the Scale Factor (typ)	ppm/K	120				
Temperature Coefficient of the Scale Factor (max)	ppm/K	20 to 220				
Temperature Coefficient Of the Offset (max)	mg/K	±0.2	±0.5	±1	±3	±5

Detailed Typical Specification of the Gyroscopes

The key components of the industrial grade gyroscopes are high-quality micro-electro-mechanical systems (MEMS) that feature excellent long-term stability and reliability. The design of the micro-mechanical silicon structures makes the gyroscopes extremely insensitive to external impacts and vibrations. They are therefore ideal suited for use in harsh environmental conditions. Due to their high performance, the gyroscopes fulfill the requirements of industrial grade applications with respect to the maximum achievable precision.

Dynamic

Measurement Range	°/s	±75	±150	±300	±900		
Scale Factor (sensitivity)	mV/°/s	13.2	6.6	3.3	1.1		
Rate Noise Density	°/s/√Hz	0.018 (typ) 0.025 (max)					
Bandwidth	Hz	150					
Amplitude Non-Linearity	% FS0	0.06 (typ) 0.15 (max)					
Bias Stability	°/hr	12					
Angular Random Walk	°/√hr	0.2					

Electrical

Full Scale Output (quasi-differential mode)	V	±0.99
Analog Output Voltage Signal Range	V	0.66 to 2.64
Offset (bias) referred to Reference Output Voltage	V	1.65 ± 0.08

Environmental

Scale Factor Error over Temperature Range (typ)	%	±0.5
Scale Factor Error over Temperature Range (max)	%	±1.5
Offset (bias) Error over Temperature Range (typ)	°/s	±1
Offset (bias) Error over Temperature Range (max)	°/s	±3
Vibration induced Noise	°/s/g²	0.060 (typ) 0.072 (max)
Vibration Rectification Error	°/s/g²	0.001 (typ) 0.003 (max)
g-Sensitivity	°/s/g	0.080 (typ) 0.200 (max)

Sensing Element	MEMS Vibrating Ring
3	3 3

Industrial Grade Inertial Measurement Unit

Sensor Calibration of the LN Accelerometers

Factory Calibration (supplied with the sensor)

Part Number		#14496	#14496	#14515	#14524	#14528
Measurement Range (sensor)	g	±2	±5	±10	±25	±50
Applied Frequency (min)	Hz	1	1	10	10	10
Applied Frequency (max)	Hz	100	100	300	500	650
Input Amplitude	m/s ²	5	5	50	100	200
Reference Frequency for Determination of Scale Factor	Hz	16	16	80	80	80

Calibration according DIN ISO 17025 (order separately)

Part Number		#14513	#14513	#14517	#14526	#14530
Measurement Range (sensor)	g	±2	±5	±10	±25	±50
Applied Frequency (min)	Hz	0.5	0.5	10	10	10
Applied Frequency (max)	Hz	150	150	500	800	1600
Input Amplitude	m/s²	5	5	50	100	200
Reference Frequency for Determination of Scale Factor	Hz	16	16	80	80	80

The conversion factor 1 g corresponds to 9.80665 m/s². If any other calibration procedure is required, don't hesitate to contact us. Furthermore, sensors have to be calibrated regularly to ensure accurate and precise results. Our services include both factory calibration and calibration in accordance with DAkkS guidelines. On request we will be glad to remind you of the next scheduled calibration of your sensors.

Sensor Calibration of the MF Accelerometers

Factory Calibration (supplied with the sensor)

Part Number		#14550	#18475	#14552	#14553	#14556
Measurement Range (sensor)	g	±2	±5	±10	±30	±50
Applied Frequency (min)	Hz	1	10	10	10	10
Applied Frequency (max)	Hz	100	700	1400	1600	1800
Input Amplitude	m/s²	5	15	50	100	200
Reference Frequency for Determination of Scale Factor	Hz	16	80	80	80	80

Calibration according DIN ISO 17025 (order separately)

Part Number		#14558	#18479	#14560	#14561	#14564
Measurement Range (sensor)	g	±2	±5	±10	±30	±50
Applied Frequency (min)	Hz	0.5	10	10	10	10
Applied Frequency (max)	Hz	150	1200	2000	2300	2500
Input Amplitude	m/s ²	5	15	50	100	200
Reference Frequency for Determination of Scale Factor	Hz	16	80	80	80	80

Industrial Grade Inertial Measurement Unit

Sensor Calibration – Gyroscopes

Factory Calibration (supplied with the sensor)

Part Number		#16148	#16149	#16150	#16151
Measurement Range (sensor)	°/s	75	150	300	900
Applied Frequency (min)	Hz	1	1	1	1
Applied Frequency (max)	Hz	100	100	100	100
Input Amplitude	°/s	35	75	150	450
Reference Frequency for Determination of Scale Factor	Hz	16	16	16	16

Calibration according DIN ISO 17025 (order separately)

Part Number		#18283	#18284	#18285	#18286
Measurement Range (sensor)	°/s	75	150	300	900
Applied Frequency (min)	Hz	1	1	1	1
Applied Frequency (max)	Hz	100	100	100	100
Input Amplitude	°/s	35	75	150	450
Reference Frequency for Determination of Scale Factor	Hz	16	16	16	16

Detachable Connecting Cable Code / Pin Configuration (12 Wire System) including common Power Supply for all Axes

	2-Pin Sensor nnector (male)	Color Code ASC AK-IMU 7		Description	
1	Supply -	Black	Power:	GND	
2	Supply +	Red	Power:	supply voltage LN: +6 to +40 VDC supply voltage MF: +5 to +40 VDC	
3	Gyro Signal	Red/Violet	X-Axis:	s: single-ended analog output voltage signal	
4	Gyro Signal	Red/Grey	Y-Axis:	s: single-ended analog output voltage signal	
5	Gyro Signal	Black/Violet	Z-Axis:	single-ended analog output voltage signal	
6	Acc Signal +	Green/Violet	X-Axis:	s: positive, analog output voltage signal for differential mode	
7	Acc Signal -	White/Violet	X-Axis:	s: negative, analog output voltage signal for differential mode	
8	Acc Signal +	Green/Grey	Y-Axis:	positive, analog output voltage signal for differential mode	
9	nc			Not connected	
10	Acc Signal -	White/Grey	Y-Axis:	negative, analog output voltage signal for differential mode	
11	Acc Signal +	Green	Z-Axis:	positive, analog output voltage signal for differential mode	
12	Acc Signal -	White	Z-Axis:	negative, analog output voltage signal for differential mode	
Shie	lding of the detachab			a tinned-copper braiding which is also connected to the Comtronic	

chassis to apply a corresponding shielding of the sensor housing

Ordering Information

Series .	Range Accelerometer [g]	Type Accelerometer	. Range Gyroscope [°/s]
ASC IMU 7	002	LN (Low Noise)	075
	005	MF (Medium Frequency)	150
	010		300
	025 (LN accelerometer only)		900
	030 (MF accelerometer only)		
	050		

Example:

ASC IMU 7.002LN.075

Ordering information are based on standard configurations. All customized versions will lead to a change or extension of the corresponding product match code.

All types of ASC IMU 7 are fabricated for operating with a detachable connector cable which is part of the product but needs to be ordered separately. For connecting the sensor housing, a 12-pin Comtronic connector (female) is used and already assembled. Furthermore, the cable features different options like configurable length, integrating a cable switch or connectors at the cable end including customized pin configuration. Please contact us for further information.

Industrial Grade Inertial Measurement Unit

Safety Precaution for Installing and Operating

This data sheet is a part of the product. Read the data sheet carefully before using the product and keep it available for future operation. Handling, electrical connections, mounting or any other work performed at the sensor must be carried out by authorized experts only. Appropriate safety precautions must be taken to exclude any risk of personal injury and damage to operating equipment as a result of a sensor malfunction.

Handling

The sensor is packaged in a reliable housing to protect the sensing elements and integrated electronic components from the ambient environment. However, poor handling of the product can lead to damages that may not be visible and cause electrical failure or reliability issues. Handle the component with caution:

- Avoid shocks and impacts on the housing, such as dropping the sensor on hard surface
- Never move the sensor by pulling the cable
- Make sure that the sensor is used within the specified environmental conditions
- Transport and store the sensor in its original or similar packaging
- The sensor should be mounted on a stable flat surface with all screws tightened or other mounting options
- When adhesives are used to mount the sensors, please select the corresponding products according to permanent or removable mounting, ambient temperature range as well as quality of the mounting surface
- Avoid any deformation during mounting the sensor
- Mounting tolerances may have an influence on the measured result

Electrical

ASC's inertial sensors are working with many established data acquisition systems. However, make sure that a proper DAQ is used, for the corresponding operation principle of the sensor. Furthermore, suitable precautions shall be employed during all phases of shipment, handling and operating:

- Active sensor pins are susceptible to damage due to electrostatic discharge (ESD)
- Make sure that the sensor is used within the specified electrical conditions
- Check all electrical connections prior to initial setup of the sensor
- An incorrect wiring of the signal or power supply connections will lead to damages of the sensor
- Completely shield the sensor and connecting cable according to your application
- Do not perform any electrical modifications at the sensor
- Do not perform any adaptions on the wiring or connectors while the device under power
- Never plug or unplug the electrical connection while the sensor is under power
- When a certain pin is not used during operation, make sure that the pin is insulated

Quality

- We have a quality management system according to ISO 9001:2015.
- The Deutsche Akkreditierungsstelle GmbH (DAkkS) has awarded to our calibration laboratory the **DIN EN ISO/IEC 17025:2018** accreditation for calibrations and has confirmed our competence to perform calibrations in the field of mechanical acceleration measurements. The registration number of the certificate is **D-K-18110-01-00**.
- The sensors described in the data sheet are CE-compliant.

Made in Germany analyzing monitoring testing measuring

ASC GmbH | Ledererstraße 10 | 85276 Pfaffenhofen | Germany | Phone: +49 8441 786547-0 | E-mail: office@asc-sensors.de | www.asc-sensors.de

Specifications are subject to change without notice. All data, information, statements, photographs and graphic illustrations made in this data sheet are without any obligation and raise no liabilities to or form part of any sales contracts of ASC GmbH or any affiliates for components referred to herein. © ASC GmbH 2021. All rights reserved. No part of this copyrighted work may be reproduced, modified or distributed in any form or by any means, or stored in any database or retrieval system, without the prior written permission of ASC GmbH or its affiliates. Any such unauthorized use for any purpose is a violation of the relevant copyright laws.

Revision: 22nd December 2023 9/9